2004 Vol. 6, No. 10 1573–1575

Copper(II) Acetate Promoted Oxidative Cyclization of Arylsulfonyl-o-allylanilines

Eric S. Sherman, Sherry R. Chemler,* Tai Boon Tan, and Oksana Gerlits[†]

Department of Chemistry, Rm. 618 Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260 schemler@buffalo.edu

Received February 19, 2004

ABSTRACT

$$\begin{array}{c|c} Cu(OAc)_2, Cs_2CO_3, \\ CH_3CN, 120 °C, 24 h \\ \hline & & & & \\ 1 & & & & \\ Me & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Tosyl-o-allylaniline 1 undergoes oxidative cyclization to produce tetracycle 2 upon treatment with Cu(OAc)₂ and Cs₂CO₃ at 120 °C. The scope of the reaction was extended to other *N*-sulfonylated aromatic systems.

The pursuit of concise methods to assemble chemical complexity is a major focus of the synthetic organic and organometallic chemical community. Reactions that do not require excessive functionalization of the substrates are especially attractive. In this communication we report a direct method for the rapid assembly of heterocyclic systems via a simple oxidative cyclization procedure.

We chose to initiate studies with the *o*-allyl aniline substrate **1** because of its excellent previous performance in aminopalladation reactions. Specific reactions under investigation in our labs include intramolecular aminohalogenation, diamination, and aminocarbonation of olefins. Wackertype experimental procedures were initially adopted, wherein a catalytic amount of expensive group 10 transition metal, e.g., Pd^{II} or Pt^{II}, would be used in conjunction with less expensive stoichiometric Cu^{II} salts (commonly used to reoxidize Pd⁰ to Pd^{II}). In the course of our studies (by carrying out control experiments) we found that the Cu^{II} oxidants are themselves capable of promoting additions of heteroatoms to double bonds.

Reports on the oxidizing powers of Cu^{II} salts have previously appeared,² but no examples examining the abilities

We have recently found that N-tosyl-o-allylaniline 1 undergoes efficient oxidative cyclization when treated with $Cu(OAc)_2$ (3 equiv) and Cs_2CO_3 in CH_3CN or DMF at 120 °C. This transformation (cf., $1 \rightarrow 2$) represents a highly concise heterocycle formation. Conversely, when olefin 1 was treated with catalytic amounts (0.1 equiv) of $Pd(OAc)_2$ in the presence of $Cu(OAc)_2$, the indole product 3, the result of aminopalladation and subsequent β -hydride elimination, was obtained, in keeping with results reported by Hegedus and others (Scheme 1). 1

The oxidative cyclization reaction is best performed at 120 °C in a pressure tube in polar solvents such as CH₃CN and DMF (Table 1, entries 4 and 7). The reaction of 1 in THF was incomplete after 24 h (entry 8). The reaction was also much less efficient upon removal of the base (entry 5). Addition of DMSO (4 equiv) neither aided nor impeded the

(2) (a) Rajesawaran, W. G.; Srinivansan, P. C. Synthesis 1994, 270–272. (b) Noto, R.; Gruttadauria, M.; Lo Meo, P.; Frenna, V.; Werber, G. J. Heterocycl. Chem. 1995, 32, 1277. (c) Tsuji, J.; Kezuka, H.; Toshida, Y.; Takayanagi, H.; Yamamoto, K. Tetrahedron 1983, 39, 3279–3282. (d) Coda, A. C.; Desimoni, G.; Monaco, H. L.; Quadrelli, P.; Righetti, P. Gazz. Chim. Ital. 1989, 119, 13–17. (e) Bisiacchi, P.; Coda, A. C.; Desimoni, G.; Righetti, P. P.; Tacconi, G. Gazz. Chim. Ital. 1985, 115, 119–123. (f) Barun, O.; Ila, H.; Junjappa, H.; Singh, O. M. J. Org. Chem. 2000, 65, 1583–1587. (g) Wang, S.-F.; Chuang, C.-P.; Lee, J.-H.; Liu, S.-T. Tetrahedron 1999, 55, 2273–2288.

of these salts to promote the additions of unfunctionalized nitrogens to olefins to form sp³ carbon centers have previously been reported.

[†] Assigned the structure of 2 by X-ray crystallography.

^{(1) (}a) Hegedus, L. S. In *Comprehensive Organic Synthesis*; Permagon; New York, 1991; Vol. 4, Chapter 3.1. (b) Hegedus, L. S.; Allen, G. F.; Bozell, J. J.; Waterman, E. L. *J. Am. Chem. Soc.* **1978**, *100*, 5800–5807. (c) Fix, S. R.; Brice, J. L.; Stahl, S. S. *Angew. Chem., Int. Ed.* **2002**, *41*, 164–166.

Scheme 1. Divergent Product Formation

progress of the reaction with this substrate. No reaction occurred at 23 or 70 °C in CH₃CN (entries 1 and 2). A 26% yield of **2** was obtained at 90 °C in CH₃CN (entry 3).

Table 1. Effect of Reaction Conditions

entry ^a	solvent	temp (°C)	isolated yield (%)
1	CH₃CN	23	nr^b
2	CH_3CN	70	nr
3	CH_3CN	90	26
4	CH_3CN	120	73
5^c	CH_3CN	120	19
6^d	CH_3CN	120	71
7	DMF	120	69
8	THF	120	51

^a Cu(OAc)₂ (3 equiv), Cs₂CO₃ (1 equiv). ^b No reaction. ^c No Cs₂CO₃ was used. ^d DMSO (4 equiv) additive.

The substrate scope was expanded to other arylsulfonylo-allylaninines in an effort to collect data on the effects of steric and electronic changes on the reaction (Table 2).

We found that the yield and selectivity vary considerably depending upon the electronic nature of the aryl substituent. In general, the reactions of electron-rich substrates 1, 4, 7, and 9 proceeded in good yield. *meta*-Substitution generally led to mixtures of regioisomeric products (see entries 2, 4, and 8). Substrates with electron-withdrawing groups on the sulfonylated aromatic ring reacted more sluggishly, and DMF proved a better solvent than CH₃CN. Addition of DMSO (4 equiv) increased the yields of these reaction, sometimes with significant affect.³ Neither added HMPA nor pyridine

Table 2. Substrate Scope^a

entry	substrate	products	conditions, yield ^c
Cita y	,	b. 2220	(selectivity)
1 ^b	NH O ₂ S 1	N _{O2} S-Me	A, 73%
2	NH O ₂ S	Me O2S	A, 51% (5 : 6 = 2.0 : 1) B, 67%
	4 - Me	\/	/F·G = 22·1\
3	NH O ₂ S 7	N O ₂ S OMe 8	A, 43% B, 63%
4		OMe CIN	A, 57% (10 : 11 = 2.7 : 1)
	O ₂ S OI	O ₂ S - O ₂ S	B, 62% Me (10:11 = 2.7:1)
5	NH 0 ₂ S 12	O ₂ S - NO ₂ 13	B, 24%
6	NH O ₂ S 14	O ₂ 15	В, 23%
7	NH O ₂ S	O ₂ S-	A, 26% B, 54%
8	16 () Bi	17	
		CI CI	A, 20% (19 : 20 = 1.8 : 1)
	NH O ₂ S 18	O ₂ S-() O ₂ S-()	B, 60% (19:20 = 1.8:1)
			~ ·

 a Conditions. **A**: Substrate in DMF (0.08 M) was treated with Cu(OAc)₂ (3 equiv) and Cs₂CO₃ (1 equiv). The mixture was heated 24 h at 120 °C in a pressure tube. **B**: DMSO (4 equiv) was added to the reaction mixture. b Reaction was run in CH₃CN. c Yields refer to the sum of products isolated by chromatography on SiO₂. The remainder of the material was either starting olefin or olefin-isomerized starting material. The structures of the products (e.g., regioisomer) were assigned by analysis of the aromatic region of the $^1\mathrm{H}$ NMR spectra.

provided such yields enhancements. Interestingly, the reaction of the *meta*-substituted nitrosulfonamide **14** provided the *o*-adduct as the sole cyclization product, albeit in low yield (entry 6, Table 2). In the case of the *p*-bromophenyl-sulfonyl-*o*-allylaniline substrate **16**, the oxidative cyclization to **17** was accompanied by loss of the bromide.

Potential mechanistic sequences for the reaction are proposed in Scheme 2. Thus, one-electron oxidation of the nitrogen ($1 \rightarrow 24$) followed by 5-exo-trig intramolecular ring closure generates 25. Subsequent addition of the primary carbon-based radical onto the aromatic ring, followed by loss of hydrogen radical, would provide 2. An alternative mechanism would involve nitrogen—copper (II) bond formation

1574 Org. Lett., Vol. 6, No. 10, 2004

⁽³⁾ For studies on the rate-enhancing effects of DMSO in Pd^{II}-catalyzed reactions, see: (a) Larock, R. C.; Hightower, T. R. *J. Org. Chem.* **1993**, *58*, 5298–5300. (b) Rönn, M.; Bäckvall, J.-E.; Andersson, P. G. *Tetrahedron Lett.* **1995**, *36*, 7749–7752. (c) Larock, R. C.; Hightower, T. R.; Hasvold, L. A.; Peterson, K. P. *J. Org. Chem.* **1996**, *61*, 3584–3585. (d) Steinhoff, B. A.; Fix, S. R.; Stahl, S. *J. Am. Chem. Soc.* **2002**, *124*, 766–767. (e) Steinhoff, B. A.; Stahl, S. S. *Org. Lett.* **2002**, *4*, 4179–4181.

Scheme 2. Proposed Reaction Mechanism

(cf., 21) followed by intramolecular migratory insertion and subsequent addition to the aromatic ring, possibly via a radical process. The *ortho*-addition preference shown in substrates 4, 9, and 14 seems to indicate radical character may be present in the aromatic addition step.⁴

The correlation of substrate reactivity with electron density at nitrogen summarized in Table 2 may indicate either varying degrees of ease of one-electron oxidation in the initiating step or an electrophilic component to the aromatic addition step.

In support of this mechanism, we note that cyclizations initiated by the formation of nitrogen radicals, though uncommon, do exist.⁵ In particular, independent work by Zard,^{5d} using *N*-(*O*-ethyl thiocarbonylsulfanyl)amides, and Broka,^{5e} using *N*-halogenated substrates, have established that nitrogen radical initiated cascades are useful methods for the synthesis of heterocycles. Nicolaou has also published a recent study using *o*-iodoxybenzoic acid (IBX) to generate nitrogen radicals. ^{5f}

Further work to expand the substrate scope and to differentiate between the possible mechanistic pathways shown in Scheme 2 will be the subject of future reports.

Acknowledgment. We thank Dr. Alice Bergmann for mass spectral analysis and the NSF for providing funds for the mass spectrometers (CHE0091977). Financial support for this work was provided by the University at Buffalo (start-up funds for S.R.C.).

Supporting Information Available: Experimental conditions and characterization data, including ¹H NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL049702+

Org. Lett., Vol. 6, No. 10, **2004**

^{(4) (}a) Ito, R.; Migita, T.; Morikawa, N.; Simamura, O. *Tetrahedron* **1965**, *21*, 955. (b) Pryor, W. A.; Davis, W. H., Jr.; Gleaton, J. H. *J. Org. Chem.* **1975**, *40*, 2099–2102.

^{(5) (}a) Bowman, W. R.; Bridge, C. F.; Brookes, P. J. Chem. Soc., Perkin Trans. 1 2000, 1–14. (b) Zard, S. Z. Synlett 1996, 1148–1154. (c) Fallis, A. G.; Brinza, I. M. Tetrahedron 1997, 53, 17543–17594. (d) Gagosz, F.; Moutrille, C.; Zard, S. Z. Org. Lett. 2002, 4, 2707–2709. (e) Broka, C. A.; Eng., K. K. J. Org. Chem. 1986, 51, 5043–5045. (f) See also a recent report using IBX: Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.; Kanich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233–2244. (g) Studer, A.; Bossart, M. Tetrahedron 2001, 57, 9649–9667.